The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression.

نویسندگان

  • Wei Jiang
  • Yuting Liu
  • Rui Liu
  • Kun Zhang
  • Yi Zhang
چکیده

Long non-coding RNAs (lncRNAs) regulate diverse biological processes, including cell lineage specification. Here, we report transcriptome profiling of human endoderm and pancreatic cell lineages using purified cell populations. Analysis of the data sets allows us to identify hundreds of lncRNAs that exhibit differentiation-stage-specific expression patterns. As a first step in characterizing these lncRNAs, we focus on an endoderm-specific lncRNA, definitive endoderm-associated lncRNA1 (DEANR1), and demonstrate that it plays an important role in human endoderm differentiation. DEANR1 contributes to endoderm differentiation by positively regulating expression of the endoderm factor FOXA2. Importantly, overexpression of FOXA2 is able to rescue endoderm differentiation defects caused by DEANR1 depletion. Mechanistically, DEANR1 facilitates FOXA2 activation by facilitating SMAD2/3 recruitment to the FOXA2 promoter. Thus, our study not only reveals a large set of differentiation-stage-specific lncRNAs but also characterizes a functional lncRNA that is important for endoderm differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

اثر القایی IDE1 در تمایز سلول‌های بنیادی القا شده انسانی به سلول‌های آندودرم قطعی با استفاده از داربست نانوفیبر PCL

Induced pluripotent cells have been considered as one of the most recent and best cell sources for the cell therapy. In this study, the differentiation potency of human iPS cells, cultured on scaffolds, which can differentiate into definitive endodermal cells as precursor for hepatocytes, pancreatic and lung cells, was studied. Embryoid bodies composed of pluripotent cells, were seeded on elect...

متن کامل

Expression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells

Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...

متن کامل

A high-content small molecule screen identifies novel inducers of definitive endoderm

OBJECTIVES Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can generate any given cell type in the human body. One challenge for cell-replacement therapy is the efficient differentiation and expansion of large quantities of progenitor cells from pluripotent stem cells produced under good manufacturing practice (GMP). FOXA2 and SOX17 double positive definitiv...

متن کامل

OCT4 Coordinates with WNT Signaling to Pre-pattern Chromatin at the SOX17 Locus during Human ES Cell Differentiation into Definitive Endoderm

We demonstrate that the pluripotency gene OCT4 has a role in regulating differentiation via Wnt signaling. OCT4 expression levels in human embryonic stem cells increases transiently during the first 24 hr of in vitro differentiation, with OCT4 occupancy increasing at endoderm regulators such as SOX17 and FOXA2. This increased occupancy correlates with loss of the PRC2 complex and the inhibitory...

متن کامل

Foxa2 Controls Pdx1 Gene Expression in Pancreatic -Cells In Vivo

Differentiation of early foregut endoderm into pancreatic endocrine and exocrine cells depends on a cascade of gene activation events controlled by various transcription factors. Prior in vitro analysis has suggested that the forkhead/winged helix transcription factor Foxa2 (formerly HNF-3 ) is a major upstream regulator of Pdx1, a homeobox gene essential for pancreatic development. Pdx1 is als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2015